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Introduction:

The MATLAB functionsctft () andctift() are used to take the Fourier
transform and inverse transform of a signal, respectively. If desired, ctft () can
also be used to plot the signal’s amplitude and phase spectrum the signal, and
ctift()usedto plot the signal, given its transform. With these useful functions
which numerically solve Fourier transform problems, the Fourier transform
theorems can be proven, as was done with a couple theorems in this lab.

Problems may occur with these functions when using truncated signals, so the
ctft () function will be tested with truncated signals to determine the effects.

Background and Theory:

The Fourier transform can be used to find the amplitude and phase spectrum for
periodic energy signals. The transform, X(f), of a signal x(t) is defined as

¥

X(H)= oxe 12PNyt
- ¥
And the inverse transform as
¥ .
xt)= oX(f)elZPMgs

- ¥

X(f) is basically just the frequency domain representation of x(t), which is in the
time domain.

The amplitude spectrum |X(f)| is the amplitude of the frequency domain
representation of x(t) at various frequencies, and the phase spectrum is B X(f).

The functions numerically evaluate to above integrals, making it possible to find
the transform of very complex functions, or even just functions that would be
hard to integrate when multiplied by an exponential. However, for MATLAB to be
able to evaluate the transform, the signal must have a finite length (a computer
can't evaluate a signal of infinite length, since it would have to sum up an infinite
number of samples).

For this reason, signals must be truncated before usingctft () orctift().
Truncating a signal is the same as multiplying it by a rectangular pulse:



The truncated signal, x; (t), of the signal x(t) is:
What this is implying is that the signal is zero & & t&): tWé)an the range
oft=t,-t/2andt=t,+t /2. In this range, the signal taRes itsormal value.

Using the convolution theorem and the transform of a rectangular pulse, the
resulting spectrum that MATLAB takes samples of is:

X, (f) = X ()t sinc(tf)e #" )

An undesirable consequence to using the truncated signal is the distortion
caused. The ‘truncation distortion’ increases as the interval t decreases (the
truncation becomes less and less like the actual interval). If t® ¥, the sinc
function above becomes an impulse function, which then makes X; equal to X(f),
which is what was originally desired. This can be expected because by letting
t® ¥, the interval is correctly being represented.

Relationships of x(t) and X(f) include the facts that for real signals, |X(f)|=|X(-f)|
and BX(-f) = -bDX(f) (note that this implies X(-f) = X'(f)). If the signal is even, X(f)
is both real and even (the total spectrum can then be plotted, instead of just the
phase and amplitude).

NOTE: The functions used in MATLAB, ctft()andctift (), are expounded
upon in Appendix |I.



Procedure, Results, and Analysis:

Refer to Appendix Il for all MATLAB commands.

1.

The Fourier transform of the function x(t) = Q ?—19 was taken using
ctft () ontheinterval -1 <t < 3 with a € “ 9 gpacing of 0.01
and a maximum spectrum signal spacing of 0.02. The spectra plotted with
ctft() wentfrom-2<f<2.The actual statement used was:

T=.01;

t=-1:T:3;

X=4*(t>=0 & t<=2); % Produces the pul se function
ctft(t,x,.02,1,0, 22028[1184]-
4:2:4,[.1,.6,.8,.4]," X(f)"," | X(f)|", angle(X(f))"');

See Appendix | forthe ctft () syntax.

Along with this plot, the analytically derived spectra (see Appendix IIlI) were
plotted. Given the spectra, x2=4*2*si nc(2*f). *exp(-j *2*pi *f), the
phase and magnitude were graphed using the following commands:

magx2=abs(x2); % Takes the anplitude of x2
phasex2=angl e(x2); % Takes the phase of x2
plct(f,magx2,-2:2,0:2:8,[.1,.1,.8,.4],1,1.5,"-',0);

pl ct (f, phasex2,-2:2,-4:2:4,[.1,.6,.8,.4],1,1.5,'-.",0);

See Appendix IV for the pl ct () syntax.

ctift() wasthen used to take the inverse transform of the derived expression
and plot it with the original given x(t). The following commands were used:

ctift(f,x2,.02,1,1,-2:2,-5:55,[.1,.1,.8,.8],
2:2,[.1..1..8,.8]." x(t)" "
plct(t,x,-2:2 -5:5:57[.1,.1,.8,.8,1,1.5"'--",0):

See Appendix | forthe cti ft () syntax.

There were discrepancies between the actual function and the one plotted using
the inverse transform. This is because of ‘Gibb’s Phenomena’.

To study the effect of truncating a signal, the signal  x(t) =2e"* was
truncated for the three intervals -2 <t<2,-1<t<1,and-0.5<t<0.5
with a sample spacing of 0.01, and plotted. The spectrum was found and
plotted for —3 < f < 3 using a sample spacing of 0.02. The analytically
derived spectrum (see Appendix IllI) was also plotted over the same
interval. To do this entire step, an m-file was created and named
Lab6_1. m The syntax for this function is as follows:



function Lab6_1(s, e)

% Function for Lab 6 part 2. Does everything needed.
%s = start of interval, e = end of interval

The function does everything just like in step 1, except that since the
signal was even and real, the whole spectrum could be plotted. See
Appendix Il for the complete function. See Appendix V for output plots and
graphs.

It can be seen from the output that as the truncation become greater (the
interval decreased), there was more and more error in the transform, just
as was predicted in the theory section.

The signal  X(t) =3e"™!u(t) was used to study the time-shift and
modulation theorems for Fourier transforms. The known spectrum is
derived in Appendix IIl.

a. The signal was plotted using pl ct () over -1 <t <7 using a sample
spacing of 0.02. The spectrum was also plotted over the interval -2 <
f < 2 with a spacing of 0.02.

See Appendix V for output.

b. Part a was repeated after shifting the signal by 0.25. The following
expression was used to define the new signal:

y=3*exp(- 2*(t +0. 25)) . *us(t +0. 25) ;

After repeating step a, the phase spectrum of the original spectrum
and the phase spectrum caused by a time shift were plotted on the
same set of axes as well as the sum of the two. From the output in
Appendix V, it can be seen that the computed phase spectrum and
known spectrum match up. The time shift just resulted in a linear
phase spectrum addition.

c. To demonstrate double-sided amplitude modulation, the original signal
was multiplied by the carrier signal cos(10pt). The new signal was
defined by this command:

xnew=x. *cos(10*pi *t);

The . * had to be used because the two matrixes, x and
cos(10*pi *t) had to have each matrix element multiplied by the
corresponding one in the other matrix (like a dot product). This
operation was used for all matrix multiplications made.



Step a was repeated for this new function.

The amplitude characteristics found in Appendix V should be
proportional to 1/f.

The phase spectrum characteristics are actually about the same as
the computed phase spectrum, or a straight line proportional to f.

The computed and known amplitude spectra have a lot of difference,
but this is caused again by the truncation. Modulating a truncated
signal appears to make this error greater. This could also be by the
low carrier frequency (5 Hz). Typically the carrier frequency is around
1 MHz.

Conclusion:

In this lab, the ctft () andctift () were found to be useful in numeric
evaluation of Fourier transforms and inverse transforms. They eliminate the
need to evaluate difficult integrals that often arise in Fourier transform
calculations (unless a symbolic result is wanted).

These functions were somewhat inaccurate when using truncated signals, but
this was discussed in the background and theory, and error was expected. It
was proven that the smaller the interval was (the greater the truncation), the
more error there was. Despite cases with truncated signals, derived transforms
(derived by definition) clearly proved the validity of these two functions.

The time-shifting and modulation properties for Fourier transforms were also
investigated. The time-shifting property was shown to be correct and accurate,
but the modulation theorem caused error, but these were determined not to be
serious.



Appendix | —Thectft()and cti ft () function




