

Date: 3/26/98

To: Rebecca Wang, EE 275 Graduate Teaching Assistant
Department of Electrical Engineering

From: Randy Dimmett
EE 275 A2 Laboratory

Subject: High Frequency Effects

In this lab, non-ideal component behavior was demonstrated by showing how the component varied with frequency. A resistor was used to show this, and non-ideal behavior was clearly seen. We took many measurements to determine the parasitic inductance in a wire using a resonance circuit, and also using direct measurement.

Appendix 1: Tabulated Impedance Measurements

Appendix 2: Plot of Frequency Response

Appendix 3: Sketch of Frequency Response with 2.1mH inductor

The inductance between connections causes the frequency response to be shifted, as well as the other characteristic things normal inductors do such as giving a positive phase to the overall impedance. This inductance also effects the frequency response by making the resonant frequency less than it normally is. For very high frequencies, the inductance becomes very high and dominates the frequency response of the circuit, so for a high-speed digital circuit, it would mostly be inductive.

High Frequency Effects (*continued*)

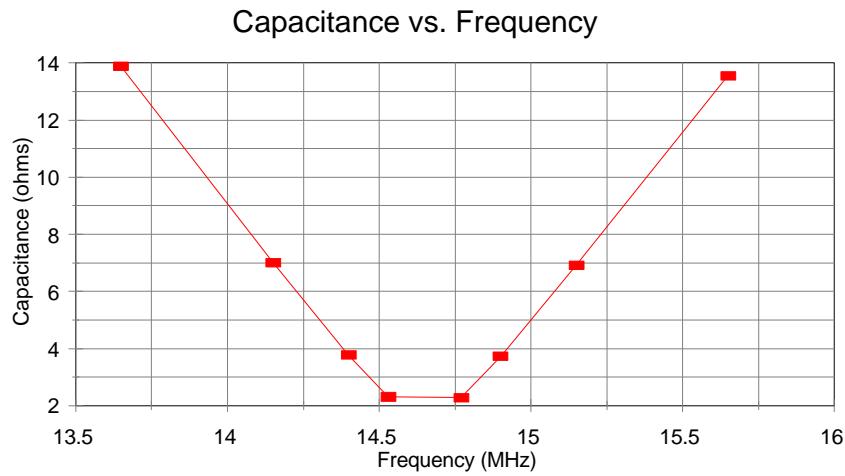
From the lab it was seen that even a resistor had parasitic features, and changed with frequency, especially for high frequencies, due to the parasitic inductance that was present. Even an inductor itself has a parasitic inductance that makes it unreliable for extremely high frequencies (megahertz frequencies), because the parasitic inductance becomes really large. Other real components also probably have a parasitic inductance making them act like a non-real component at high frequencies.

Appendix 1 - Tabulated Impedance Measurements

High Frequency Effects

Frequency:	50 Wresistor:	Lead wire:	Combination:
500 MHz	$47.6 \angle .8^\circ$	$3.48 \angle 78.8^\circ$	$47.9 \angle 4.4^\circ$
2 MHz	$47.9 \angle .6^\circ$	$13.56 \angle 86.1^\circ$	$50.2 \angle 14.8^\circ$
10 MHz	$48.2 \angle 4.2^\circ$	$71.3 \angle 88.6^\circ$	$88.8 \angle 50.8^\circ$
20 MHz	$49.3 \angle 8.5^\circ$	$183.5 \angle 86.2^\circ$	$193.8 \angle 58.5^\circ$
40 MHz	$53.4 \angle 16.2^\circ$	$1.461 \text{ k} \angle 71.5^\circ$	$976 \angle 24^\circ$

When inductance equals resistance of load, at $\angle 45^\circ$, $f = 7.875 \text{ MHz}$ and 37.39 MHz


In lead wire, $Z_{eq} = j\omega L + R$. When $\angle 90^\circ$, $|Z_{eq}| = \omega L$.

Therefore, $L = |Z_{eq}| / 2\pi f = 1.1 \mu\text{H}$

Appendix 2 - Plot of Frequency Response

High Frequency Effects

Capacitor's Measured Value: **95.1 pF**

Resonance frequency in an RLC circuit:

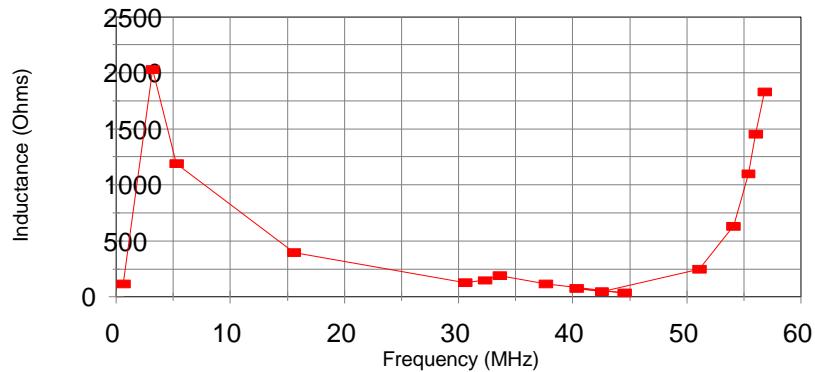
$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$L = \frac{1}{(2\pi f)^2 C} = \frac{1}{(95.1 \mu F)^2 [2\pi(14.65 M)]^2} = 1.24 \mu H$$

$$\text{half power frequency} = \frac{\sqrt{2}R}{4\pi L} \pm \frac{\sqrt{2R^2 + \frac{4L}{C}}}{4\pi L}$$

$$\% \text{ Difference} = 100\% * (1.24 \mu H - 1.135 \mu H) / 1.135 \mu H = 9.36\%$$

Upper frequency: **14.7 MHz**; Lower frequency: **14.5 Mhz**


Bandwidth = Upper - Lower = **.2 Mhz**

$R_{\text{calculated}}$: **2.28 W**

Appendix 3 - Sketch of Frequency Response with 2.1mH inductor

High Frequency Effects

Inductance vs. Frequency

Resonant Frequencies:

$f=669 \text{ kHz}$, 44.54 MHz , and 56.75 MHz